DC vs RPZ - What's the Difference and Why Should You Care?

You’ve heard these phrases and acronyms repeatedly. If you are a designer, you feel sure that you are expected to know what they mean. Here’s a quick rundown on what they are and how they differ.

Backflow Preventer DiagramA designer may specify one of 2 types of backflow prevention devices. First, the Double-Check Valve Assembly. This is often shortened to DC and is typically thought of as the appropriate solution for low hazard conditions. Second, the Reduced Pressure Zone Valve Assembly, often shortened to RP or RPZ, is thought of as the appropriate solution for high hazard conditions.          

How do you determine hazard? The simple answer is that the purveyor determines it, but every jurisdiction is different. Every city has its own list of named examples for what constitutes the hazard threshold. Here is an example from Washington DC. They also stipulate that if the anticipated use, as you know it, is not named explicitly, then they reserve the right to make the decision during plans review. It’s also important to understand that you cannot, as a designer, over-protect the incoming water service. This means there is no penalty for providing the higher degree of protection.

Reduced Pressure Zone Backflow Preventer Normal Flow DiagramThe Double-Check Assembly (Figure 1) was developed in the 1950s for the fire industry. Any time the pressure on the property (downstream) side exceeds the pressure on the city (public) side, the two redundant check valves close stopping the backwards water flow. There are two problems with the Double-Check backflow preventer. First, no remedy exists in the event of a malfunction of the valve closures or if debris in the water line causes the valves to not close completely. Second, and this is the big problem, there is no way to know when such a failure has occurred without conducting a full test by a qualified professional.  The Double-Check is a closed system. It has no method of revealing whether the internal check valves are functioning properly and no way to detect the presence of debris that is impeding full closure.

The Reduced Pressure Zone Valve Assembly (Figure 2) consists of two independently operating check valves just like the Double-Check as well as a hydraulically operated differential relief valve located below the first check valve.

Best Practices in Backflow Prevention & Protection

This hydraulic valve and its placement makes the RPZ virtually fail-safe but it comes at a cost to the area around the device.

RPZ Backflow Preventer Evacuating Diagram

When a flow stop occurs, both check valves close. At that moment, the relief valve opens and evacuates the water between the valves. (Figure 3) Some think that this event defines the limit of how much water can ever flow from the RPZ into a drain. This is not so.

Consider a flow-stop situation, like one that might naturally occur at the end of the day (Figure 4). If you look closely, you can see that a small pebble has lodged in the #2 check valve. Now imagine some sort of back siphon event over night. Perhaps a nearby building fire leaches the water back with the draw of a fire hydrant; or a pump station fails; or a water main breaks. Because the #2 check valve is not closing, all the water that has been delivered to the building will continue to flow out the relief valve until the private lines are cleared. If this is a four story building, that’s a lot of water.

Watch the video below for an example of RPZ flooding and to see just how much water is discharged when a small amount of debris becomes lodged in the device.

Now consider a full failure of the #2 check valve, like one that might occur if the device is knockedRPZ Backflow Preventer Full Failure Diagram out of round or has a mechanical failure. It’s essentially the same event with the exception that due to the larger valve opening, there is actually a higher flood rate. Now you have water flowing through the relief valve at full head pressure. Again, if this is a large or multi-story building, that’s a lot of water very fast.

The main thing to take away from this is that both backflow prevention device types perform the same function when they are operating properly, but only the RPZ is designed to protect the public water supply by disposing of any backwards-flowing water if any of the check valves or the relief valve fails.

aluminum enclosure

Related Posts

Why RPZ Valves Are Required and How to Install One

Winterize Your Backflow In Eight Steps (or One)

Aluminum Enclosures and Concrete Pads: Total Security and Confidence

One Step Ahead: A Look at High-Hazard Cross-Connections and Compliance

IoT Takes Backflow Prevention To Another Level

3 Reasons Why a Backflow Cover Must Have Heat

From the Field: Tips for Safe-T-Cover Enclosures and Protective PVC Coating

From the Field – National Backflow Prevention Day

Forward thinking in Arlington, Texas: Leading the way with public health and backflow preventers

Game changer: The Ames Deringer backflow


How a Project in Georgia Could Change the Face of the Backflow Protection and Enclosure Requirements

What Happens When a RPZ Fails?

Introducing Our New Best Practices Guide

Do Backflow Events Really Endanger Our Drinking Water?

The State Flower of Florida (Backflow Preventer)

Comparing the Costs: Meter Vault vs. Enclosure

Meter Vault Innovation — Check Out This Trend

The Drawbacks to Using a Backflow Valve Cage

Quintessential List of Backflow Preventer Enclosure FAILS

Chicago Backflow Incident of 1933

Three Reasons Why You Should Choose an N-Type Device

The Right Insulated Cover for Backflow Valve and Enclosure Heating

How Does a Backflow Preventer Work?

What You Need To Know About Backflow Prevention Devices

This is How You Cut Backflow Preventer Installation Costs

This is How A Backflow Preventer Installation Should Be Done

Part 3: Why You Should Keep Backflow Preventers Out of Basements

Above-Ground-Backflow Assemblies Are a Big Winner in Las Vegas

A Backflow Preventer in a Utility Vault Can Be Deadly

How to Find the Perfect Enclosure for Backflow Prevention

How to Decide If You Should Repair or Replace Your Backflow Preventer

VIDEO: Safe-T-Cover Hopes To Change The Way You Think About Backflow

Expert Says Containment Protection is Necessary For Backflow Prevention

What You Need to Know About Backflow Prevention and Flood Risks

How To Build a Successful Cross Connection Control Program

What is a Cross Connection Control and Backflow Preventer?

Expert Says Backflow Prevention Can't Be Ignored Anymore


Fields Presents a "Smart" Future for Backflow Preventers

Water Quality Drops When Backflow Preventers Fail

Backflow Prevention Plays Small but Mighty Role in Water Quality

When You Should Use Backflow Theft Prevention Cages

Cross Connection Control Spotlight: How LVVWD Avoids Backflow

Backflow Protection and Fire Protection Pit Safety Against Safety

Ottawa protects water system with new backflow prevention program (15,000 Properties to be Affected)

Still Spec'ing the Watts 909? 3 Reasons to Switch to a 957 Assembly

Webinar: The End-All Discussion on Underground Utility Vaults

Never Put Your Backflow Preventer Installation In The Basement

High Hazard Classification - Who Makes the Determination?

How to design & Buy a Pump Enclosure

Get the free, editable checklist.



Have a question about a backflow preventer enclosure?
Click the contact us button below and one of our experts will be able to help with your specific enclosure needs.